PostgreSQL 9.4.4 文档 | |||
---|---|---|---|
Prev | Up | Chapter 35. 扩展 SQL | Next |
User-defined functions can be written in C (or a language that can be made compatible with C, such as C++). Such functions are compiled into dynamically loadable objects (also called shared libraries) and are loaded by the server on demand. The dynamic loading feature is what distinguishes "C language" functions from "internal" functions — the actual coding conventions are essentially the same for both. (Hence, the standard internal function library is a rich source of coding examples for user-defined C functions.)
Two different calling conventions are currently used for C functions. The newer "version 1" calling convention is indicated by writing a PG_FUNCTION_INFO_V1() macro call for the function, as illustrated below. Lack of such a macro indicates an old-style ("version 0") function. The language name specified in CREATE FUNCTION is C in either case. Old-style functions are now deprecated because of portability problems and lack of functionality, but they are still supported for compatibility reasons.
The first time a user-defined function in a particular loadable object file is called in a session, the dynamic loader loads that object file into memory so that the function can be called. The CREATE FUNCTION for a user-defined C function must therefore specify two pieces of information for the function: the name of the loadable object file, and the C name (link symbol) of the specific function to call within that object file. If the C name is not explicitly specified then it is assumed to be the same as the SQL function name.
The following algorithm is used to locate the shared object file based on the name given in the CREATE FUNCTION command:
If the name is an absolute path, the given file is loaded.
If the name starts with the string $libdir, that part is replaced by the PostgreSQL package library directory name, which is determined at build time.
If the name does not contain a directory part, the file is searched for in the path specified by the configuration variable dynamic_library_path.
Otherwise (the file was not found in the path, or it contains a non-absolute directory part), the dynamic loader will try to take the name as given, which will most likely fail. (It is unreliable to depend on the current working directory.)
If this sequence does not work, the platform-specific shared library file name extension (often .so) is appended to the given name and this sequence is tried again. If that fails as well, the load will fail.
It is recommended to locate shared libraries either relative to $libdir or through the dynamic library path. This simplifies version upgrades if the new installation is at a different location. The actual directory that $libdir stands for can be found out with the command pg_config --pkglibdir.
The user ID the PostgreSQL server runs as must be able to traverse the path to the file you intend to load. Making the file or a higher-level directory not readable and/or not executable by the postgres user is a common mistake.
In any case, the file name that is given in the CREATE FUNCTION command is recorded literally in the system catalogs, so if the file needs to be loaded again the same procedure is applied.
Note: PostgreSQL will not compile a C function automatically. The object file must be compiled before it is referenced in a CREATE FUNCTION command. See Section 35.9.6 for additional information.
To ensure that a dynamically loaded object file is not loaded into an incompatible server, PostgreSQL checks that the file contains a "magic block" with the appropriate contents. This allows the server to detect obvious incompatibilities, such as code compiled for a different major version of PostgreSQL. A magic block is required as of PostgreSQL 8.2. To include a magic block, write this in one (and only one) of the module source files, after having included the header fmgr.h:
#ifdef PG_MODULE_MAGIC PG_MODULE_MAGIC; #endif
The #ifdef test can be omitted if the code doesn't need to compile against pre-8.2 PostgreSQL releases.
After it is used for the first time, a dynamically loaded object file is retained in memory. Future calls in the same session to the function(s) in that file will only incur the small overhead of a symbol table lookup. If you need to force a reload of an object file, for example after recompiling it, begin a fresh session.
Optionally, a dynamically loaded file can contain initialization and
finalization functions. If the file includes a function named
_PG_init
, that function will be called immediately after
loading the file. The function receives no parameters and should
return void. If the file includes a function named
_PG_fini
, that function will be called immediately before
unloading the file. Likewise, the function receives no parameters and
should return void. Note that _PG_fini
will only be called
during an unload of the file, not during process termination.
(Presently, unloads are disabled and will never occur, but this may
change in the future.)
To know how to write C-language functions, you need to know how PostgreSQL internally represents base data types and how they can be passed to and from functions. Internally, PostgreSQL regards a base type as a "blob of memory". The user-defined functions that you define over a type in turn define the way that PostgreSQL can operate on it. That is, PostgreSQL will only store and retrieve the data from disk and use your user-defined functions to input, process, and output the data.
Base types can have one of three internal formats:
pass by value, fixed-length
pass by reference, fixed-length
pass by reference, variable-length
By-value types can only be 1, 2, or 4 bytes in length (also 8 bytes, if sizeof(Datum) is 8 on your machine). You should be careful to define your types such that they will be the same size (in bytes) on all architectures. For example, the long type is dangerous because it is 4 bytes on some machines and 8 bytes on others, whereas int type is 4 bytes on most Unix machines. A reasonable implementation of the int4 type on Unix machines might be:
/* 4-byte integer, passed by value */ typedef int int4;
(The actual PostgreSQL C code calls this type int32, because it is a convention in C that intXX means XX bits. Note therefore also that the C type int8 is 1 byte in size. The SQL type int8 is called int64 in C. See also Table 35-1.)
On the other hand, fixed-length types of any size can be passed by-reference. For example, here is a sample implementation of a PostgreSQL type:
/* 16-byte structure, passed by reference */ typedef struct { double x, y; } Point;
Only pointers to such types can be used when passing them in and out of PostgreSQL functions. To return a value of such a type, allocate the right amount of memory with palloc, fill in the allocated memory, and return a pointer to it. (Also, if you just want to return the same value as one of your input arguments that's of the same data type, you can skip the extra palloc and just return the pointer to the input value.)
Finally, all variable-length types must also be passed by reference. All variable-length types must begin with an opaque length field of exactly 4 bytes, which will be set by SET_VARSIZE; never set this field directly! All data to be stored within that type must be located in the memory immediately following that length field. The length field contains the total length of the structure, that is, it includes the size of the length field itself.
Another important point is to avoid leaving any uninitialized bits within data type values; for example, take care to zero out any alignment padding bytes that might be present in structs. Without this, logically-equivalent constants of your data type might be seen as unequal by the planner, leading to inefficient (though not incorrect) plans.
Warning |
Never modify the contents of a pass-by-reference input value. If you do so you are likely to corrupt on-disk data, since the pointer you are given might point directly into a disk buffer. The sole exception to this rule is explained in Section 35.10. |
As an example, we can define the type text as follows:
typedef struct { int32 length; char data[1]; } text;
Obviously, the data field declared here is not long enough to hold all possible strings. Since it's impossible to declare a variable-size structure in C, we rely on the knowledge that the C compiler won't range-check array subscripts. We just allocate the necessary amount of space and then access the array as if it were declared the right length. (This is a common trick, which you can read about in many textbooks about C.)
When manipulating variable-length types, we must be careful to allocate the correct amount of memory and set the length field correctly. For example, if we wanted to store 40 bytes in a text structure, we might use a code fragment like this:
#include "postgres.h" ... char buffer[40]; /* our source data */ ... text *destination = (text *) palloc(VARHDRSZ + 40); SET_VARSIZE(destination, VARHDRSZ + 40); memcpy(destination->data, buffer, 40); ...
VARHDRSZ is the same as sizeof(int32), but it's considered good style to use the macro VARHDRSZ to refer to the size of the overhead for a variable-length type. Also, the length field must be set using the SET_VARSIZE macro, not by simple assignment.
Table 35-1 specifies which C type corresponds to which SQL type when writing a C-language function that uses a built-in type of PostgreSQL. The "Defined In" column gives the header file that needs to be included to get the type definition. (The actual definition might be in a different file that is included by the listed file. It is recommended that users stick to the defined interface.) Note that you should always include postgres.h first in any source file, because it declares a number of things that you will need anyway.
Table 35-1. Equivalent C Types for Built-in SQL Types
SQL Type | C Type | Defined In |
---|---|---|
abstime | AbsoluteTime | utils/nabstime.h |
boolean | bool | postgres.h (maybe compiler built-in) |
box | BOX* | utils/geo_decls.h |
bytea | bytea* | postgres.h |
"char" | char | (compiler built-in) |
character | BpChar* | postgres.h |
cid | CommandId | postgres.h |
date | DateADT | utils/date.h |
smallint (int2) | int16 | postgres.h |
int2vector | int2vector* | postgres.h |
integer (int4) | int32 | postgres.h |
real (float4) | float4* | postgres.h |
double precision (float8) | float8* | postgres.h |
interval | Interval* | datatype/timestamp.h |
lseg | LSEG* | utils/geo_decls.h |
name | Name | postgres.h |
oid | Oid | postgres.h |
oidvector | oidvector* | postgres.h |
path | PATH* | utils/geo_decls.h |
point | POINT* | utils/geo_decls.h |
regproc | regproc | postgres.h |
reltime | RelativeTime | utils/nabstime.h |
text | text* | postgres.h |
tid | ItemPointer | storage/itemptr.h |
time | TimeADT | utils/date.h |
time with time zone | TimeTzADT | utils/date.h |
timestamp | Timestamp* | datatype/timestamp.h |
tinterval | TimeInterval | utils/nabstime.h |
varchar | VarChar* | postgres.h |
xid | TransactionId | postgres.h |
Now that we've gone over all of the possible structures for base types, we can show some examples of real functions.
We present the "old style" calling convention first — although this approach is now deprecated, it's easier to get a handle on initially. In the version-0 method, the arguments and result of the C function are just declared in normal C style, but being careful to use the C representation of each SQL data type as shown above.
Here are some 例子:
#include "postgres.h" #include <string.h> #include "utils/geo_decls.h" #ifdef PG_MODULE_MAGIC PG_MODULE_MAGIC; #endif /* by value */ int add_one(int arg) { return arg + 1; } /* by reference, fixed length */ float8 * add_one_float8(float8 *arg) { float8 *result = (float8 *) palloc(sizeof(float8)); *result = *arg + 1.0; return result; } Point * makepoint(Point *pointx, Point *pointy) { Point *new_point = (Point *) palloc(sizeof(Point)); new_point->x = pointx->x; new_point->y = pointy->y; return new_point; } /* by reference, variable length */ text * copytext(text *t) { /* * VARSIZE is the total size of the struct in bytes. */ text *new_t = (text *) palloc(VARSIZE(t)); SET_VARSIZE(new_t, VARSIZE(t)); /* * VARDATA is a pointer to the data region of the struct. */ memcpy((void *) VARDATA(new_t), /* destination */ (void *) VARDATA(t), /* source */ VARSIZE(t) - VARHDRSZ); /* how many bytes */ return new_t; } text * concat_text(text *arg1, text *arg2) { int32 new_text_size = VARSIZE(arg1) + VARSIZE(arg2) - VARHDRSZ; text *new_text = (text *) palloc(new_text_size); SET_VARSIZE(new_text, new_text_size); memcpy(VARDATA(new_text), VARDATA(arg1), VARSIZE(arg1) - VARHDRSZ); memcpy(VARDATA(new_text) + (VARSIZE(arg1) - VARHDRSZ), VARDATA(arg2), VARSIZE(arg2) - VARHDRSZ); return new_text; }
Supposing that the above code has been prepared in file funcs.c and compiled into a shared object, we could define the functions to PostgreSQL with commands like this:
CREATE FUNCTION add_one(integer) RETURNS integer AS 'DIRECTORY/funcs', 'add_one' LANGUAGE C STRICT; -- note overloading of SQL function name "add_one" CREATE FUNCTION add_one(double precision) RETURNS double precision AS 'DIRECTORY/funcs', 'add_one_float8' LANGUAGE C STRICT; CREATE FUNCTION makepoint(point, point) RETURNS point AS 'DIRECTORY/funcs', 'makepoint' LANGUAGE C STRICT; CREATE FUNCTION copytext(text) RETURNS text AS 'DIRECTORY/funcs', 'copytext' LANGUAGE C STRICT; CREATE FUNCTION concat_text(text, text) RETURNS text AS 'DIRECTORY/funcs', 'concat_text' LANGUAGE C STRICT;
Here, DIRECTORY stands for the directory of the shared library file (for instance the PostgreSQL tutorial directory, which contains the code for the examples used in this section). (Better style would be to use just 'funcs' in the AS clause, after having added DIRECTORY to the search path. In any case, we can omit the system-specific extension for a shared library, commonly .so or .sl.)
Notice that we have specified the functions as "strict", meaning that the system should automatically assume a null result if any input value is null. By doing this, we avoid having to check for null inputs in the function code. Without this, we'd have to check for null values explicitly, by checking for a null pointer for each pass-by-reference argument. (For pass-by-value arguments, we don't even have a way to check!)
Although this calling convention is simple to use, it is not very portable; on some architectures there are problems with passing data types that are smaller than int this way. Also, there is no simple way to return a null result, nor to cope with null arguments in any way other than making the function strict. The version-1 convention, presented next, overcomes these objections.
The version-1 calling convention relies on macros to suppress most of the complexity of passing arguments and results. The C declaration of a version-1 function is always:
Datum funcname(PG_FUNCTION_ARGS)
In addition, the macro call:
PG_FUNCTION_INFO_V1(funcname);
must appear in the same source file. (Conventionally, it's written just before the function itself.) This macro call is not needed for internal-language functions, since PostgreSQL assumes that all internal functions use the version-1 convention. It is, however, required for dynamically-loaded functions.
In a version-1 function, each actual argument is fetched using a
PG_GETARG_xxx()
macro that corresponds to the argument's data type, and the
result is returned using a
PG_RETURN_xxx()
macro for the return type.
PG_GETARG_xxx()
takes as its argument the number of the function argument to
fetch, where the count starts at 0.
PG_RETURN_xxx()
takes as its argument the actual value to return.
Here we show the same functions as above, coded in version-1 style:
#include "postgres.h" #include <string.h> #include "fmgr.h" #include "utils/geo_decls.h" #ifdef PG_MODULE_MAGIC PG_MODULE_MAGIC; #endif /* by value */ PG_FUNCTION_INFO_V1(add_one); Datum add_one(PG_FUNCTION_ARGS) { int32 arg = PG_GETARG_INT32(0); PG_RETURN_INT32(arg + 1); } /* by reference, fixed length */ PG_FUNCTION_INFO_V1(add_one_float8); Datum add_one_float8(PG_FUNCTION_ARGS) { /* The macros for FLOAT8 hide its pass-by-reference nature. */ float8 arg = PG_GETARG_FLOAT8(0); PG_RETURN_FLOAT8(arg + 1.0); } PG_FUNCTION_INFO_V1(makepoint); Datum makepoint(PG_FUNCTION_ARGS) { /* Here, the pass-by-reference nature of Point is not hidden. */ Point *pointx = PG_GETARG_POINT_P(0); Point *pointy = PG_GETARG_POINT_P(1); Point *new_point = (Point *) palloc(sizeof(Point)); new_point->x = pointx->x; new_point->y = pointy->y; PG_RETURN_POINT_P(new_point); } /* by reference, variable length */ PG_FUNCTION_INFO_V1(copytext); Datum copytext(PG_FUNCTION_ARGS) { text *t = PG_GETARG_TEXT_P(0); /* * VARSIZE is the total size of the struct in bytes. */ text *new_t = (text *) palloc(VARSIZE(t)); SET_VARSIZE(new_t, VARSIZE(t)); /* * VARDATA is a pointer to the data region of the struct. */ memcpy((void *) VARDATA(new_t), /* destination */ (void *) VARDATA(t), /* source */ VARSIZE(t) - VARHDRSZ); /* how many bytes */ PG_RETURN_TEXT_P(new_t); } PG_FUNCTION_INFO_V1(concat_text); Datum concat_text(PG_FUNCTION_ARGS) { text *arg1 = PG_GETARG_TEXT_P(0); text *arg2 = PG_GETARG_TEXT_P(1); int32 new_text_size = VARSIZE(arg1) + VARSIZE(arg2) - VARHDRSZ; text *new_text = (text *) palloc(new_text_size); SET_VARSIZE(new_text, new_text_size); memcpy(VARDATA(new_text), VARDATA(arg1), VARSIZE(arg1) - VARHDRSZ); memcpy(VARDATA(new_text) + (VARSIZE(arg1) - VARHDRSZ), VARDATA(arg2), VARSIZE(arg2) - VARHDRSZ); PG_RETURN_TEXT_P(new_text); }
The CREATE FUNCTION commands are the same as for the version-0 equivalents.
At first glance, the version-1 coding conventions might appear to
be just pointless obscurantism. They do, however, offer a number
of improvements, because the macros can hide unnecessary detail.
An example is that in coding add_one_float8
, we no longer need to
be aware that float8 is a pass-by-reference type. Another
example is that the GETARG macros for variable-length types allow
for more efficient fetching of "toasted" (compressed or
out-of-line) values.
One big improvement in version-1 functions is better handling of null
inputs and results. The macro PG_ARGISNULL(n)
allows a function to test whether each input is null. (Of course, doing
this is only necessary in functions not declared "strict".)
As with the
PG_GETARG_xxx()
macros,
the input arguments are counted beginning at zero. Note that one
should refrain from executing
PG_GETARG_xxx()
until
one has verified that the argument isn't null.
To return a null result, execute PG_RETURN_NULL()
;
this works in both strict and nonstrict functions.
Other options provided in the new-style interface are two
variants of the
PG_GETARG_xxx()
macros. The first of these,
PG_GETARG_xxx_COPY()
,
guarantees to return a copy of the specified argument that is
safe for writing into. (The normal macros will sometimes return a
pointer to a value that is physically stored in a table, which
must not be written to. Using the
PG_GETARG_xxx_COPY()
macros guarantees a writable result.)
The second variant consists of the
PG_GETARG_xxx_SLICE()
macros which take three arguments. The first is the number of the
function argument (as above). The second and third are the offset and
length of the segment to be returned. Offsets are counted from
zero, and a negative length requests that the remainder of the
value be returned. These macros provide more efficient access to
parts of large values in the case where they have storage type
"external". (The storage type of a column can be specified using
ALTER TABLE tablename ALTER
COLUMN colname SET STORAGE
storagetype. storagetype is one of
plain, external, extended,
or main.)
Finally, the version-1 function call conventions make it possible to return set results (Section 35.9.9) and implement trigger functions (Chapter 36) and procedural-language call handlers (Chapter 52). Version-1 code is also more portable than version-0, because it does not break restrictions on function call protocol in the C standard. For more details see src/backend/utils/fmgr/README in the source distribution.
Before we turn to the more advanced topics, we should discuss some coding rules for PostgreSQL C-language functions. While it might be possible to load functions written in languages other than C into PostgreSQL, this is usually difficult (when it is possible at all) because other languages, such as C++, FORTRAN, or Pascal often do not follow the same calling convention as C. That is, other languages do not pass argument and return values between functions in the same way. For this reason, we will assume that your C-language functions are actually written in C.
The basic rules for writing and building C functions are as follows:
Use pg_config --includedir-server to find out where the PostgreSQL server header files are installed on your system (or the system that your users will be running on).
Compiling and linking your code so that it can be dynamically loaded into PostgreSQL always requires special flags. See Section 35.9.6 for a detailed explanation of how to do it for your particular operating system.
Remember to define a "magic block" for your shared library, as described in Section 35.9.1.
When allocating memory, use the
PostgreSQL functions
palloc
and pfree
instead of the corresponding C library functions
malloc
and free
.
The memory allocated by palloc
will be
freed automatically at the end of each transaction, preventing
memory leaks.
Always zero the bytes of your structures using memset
(or allocate them with palloc0
in the first place).
Even if you assign to each field of your structure, there might be
alignment padding (holes in the structure) that contain
garbage values. Without this, it's difficult to
support hash indexes or hash joins, as you must pick out only
the significant bits of your data structure to compute a hash.
The planner also sometimes relies on comparing constants via
bitwise equality, so you can get undesirable planning results if
logically-equivalent values aren't bitwise equal.
Most of the internal PostgreSQL types are declared in postgres.h, while the function manager interfaces (PG_FUNCTION_ARGS, etc.) are in fmgr.h, so you will need to include at least these two files. For portability reasons it's best to include postgres.h first, before any other system or user header files. Including postgres.h will also include elog.h and palloc.h for you.
Symbol names defined within object files must not conflict with each other or with symbols defined in the PostgreSQL server executable. You will have to rename your functions or variables if you get error messages to this effect.
在使用 C 编写的PostgreSQL扩展函数之前,必须以一种特殊的方式编译并且链接它们,以便产生一个能被服务器动态载入的文件。简而言之,需要创建一个共享库。
超出本节所含内容之外的信息请参考你的操作系统文档,特别是 C 编译器(cc)和链接编辑器(ld)的手册页。另外,PostgreSQL源代码的contrib目录中包含了一些可以工作的例子。但是,如果你依靠这些例子,也会使你的模块依赖于PostgreSQL源码的可用性。
创建共享库通常与链接可执行文件相似:首先源文件被编译成对象文件,然后对象文件被链接起来。对象文件需要被创建为独立位置代码(PIC),,这在概念上意味着当它们被可执行文件载入时,它们可以被放置在内存中的任意位置(用于可执行文件的对象文件通常不会以那种方式编译)。链接一个共享库的命令会包含特殊标志来把它与链接一个可执行文件区分开(至少在理论上 — 在某些系统上实际上很丑陋)。
在下列例子中,我们假定你的源代码在一个文件foo.c中,并且我们将创建一个共享库foo.so。除非特别注明,中间的对象文件将被称为foo.o。一个共享库能包含多于一个对象文件,但是我们在这里只使用一个。
用来创建PIC的编译器标志是-fpic。要创建共享库,编译器标志是-shared。
gcc -fpic -c foo.c gcc -shared -o foo.so foo.o
这适用于FreeBSD从 3.0 开始的版本。
该系统编译器创建PIC的编译器标志是+z。当使用GCC自己的-fpic时。用于共享库的链接器标志是-b。因此:
cc +z -c foo.c
或者:
gcc -fpic -c foo.c
并且然后:
ld -b -o foo.sl foo.o
和大部分其他系统不同,HP-UX为共享库使用扩展.sl。
创建PIC的编译器标志是-fpic。在某些平台上的某些情况下,如果-fpic不起作用,那么必须使用-fPIC。详情请参考 GCC 手册。创建一个共享库的编译器标志是-shared。一个完整的例子看起来像:
cc -fpic -c foo.c cc -shared -o foo.so foo.o
这里是一个例子。它假定安装了开发者工具。
cc -c foo.c cc -bundle -flat_namespace -undefined suppress -o foo.so foo.o
创建PIC的编译器标志是-fpic。对于ELF系统,带着标志-shared的编译器被用来链接共享库。在旧的非 ELF 系统上,ld -Bshareable会被使用。
gcc -fpic -c foo.c gcc -shared -o foo.so foo.o
创建PIC的编译器标志是-fpic。ld -Bshareable被用来链接共享库。
gcc -fpic -c foo.c ld -Bshareable -o foo.so foo.o
创建PIC的编译器标志是-KPIC(用于 Sun 编译器)以及-fpic(用于GCC)。要链接共享库,编译器选项对几种编译器都是-G或者是对GCC使用-shared。
cc -KPIC -c foo.c cc -G -o foo.so foo.o
or
gcc -fpic -c foo.c gcc -G -o foo.so foo.o
PIC是默认值,因此便已命令是常用的那一个。带有特殊选项的ld会被用来做链接。
cc -c foo.c ld -shared -expect_unresolved '*' -o foo.so foo.o
使用 GCC 替代系统编译器的相同过程,不需要特殊的选项。
创建PIC的编译器标志是-KPIC(用于 SCO 编译器)以及-fpic(用于GCC)。要链接共享库,编译器选项是-G(用于 SCO 编译器)以及-shared(用于GCC)。
cc -K PIC -c foo.c cc -G -o foo.so foo.o
or
gcc -fpic -c foo.c gcc -shared -o foo.so foo.o
Tip: 如果这对你来说太复杂,你应该考虑使用 GNU Libtool,它会用一个统一的接口隐藏平台差异。
结果的共享库文件接着就可以被载入到PostgreSQL。当把文件名指定给CREATE FUNCTION命令时,必须把共享库文件的名字给它,而不是中间的对象文件。注意系统的标准共享库扩展(通常是.so或者.sl)在CREATE FUNCTION命令中可以被忽略,并且通常为了最好的可移植性应该被忽略。
服务器会期望在哪里寻找共享库文件请参考Section 35.9.1。
Composite types do not have a fixed layout like C structures. Instances of a composite type can contain null fields. In addition, composite types that are part of an inheritance hierarchy can have different fields than other members of the same inheritance hierarchy. Therefore, PostgreSQL provides a function interface for accessing fields of composite types from C.
Suppose we want to write a function to answer the query:
SELECT name, c_overpaid(emp, 1500) AS overpaid FROM emp WHERE name = 'Bill' OR name = 'Sam';
Using call conventions version 0, we can define
c_overpaid
as:
#include "postgres.h" #include "executor/executor.h" /* for GetAttributeByName() */ #ifdef PG_MODULE_MAGIC PG_MODULE_MAGIC; #endif bool c_overpaid(HeapTupleHeader t, /* the current row of emp */ int32 limit) { bool isnull; int32 salary; salary = DatumGetInt32(GetAttributeByName(t, "salary", &isnull)); if (isnull) return false; return salary > limit; }
In version-1 coding, the above would look like this:
#include "postgres.h" #include "executor/executor.h" /* for GetAttributeByName() */ #ifdef PG_MODULE_MAGIC PG_MODULE_MAGIC; #endif PG_FUNCTION_INFO_V1(c_overpaid); Datum c_overpaid(PG_FUNCTION_ARGS) { HeapTupleHeader t = PG_GETARG_HEAPTUPLEHEADER(0); int32 limit = PG_GETARG_INT32(1); bool isnull; Datum salary; salary = GetAttributeByName(t, "salary", &isnull); if (isnull) PG_RETURN_BOOL(false); /* Alternatively, we might prefer to do PG_RETURN_NULL() for null salary. */ PG_RETURN_BOOL(DatumGetInt32(salary) > limit); }
GetAttributeByName
is the
PostgreSQL system function that
returns attributes out of the specified row. It has
three arguments: the argument of type HeapTupleHeader passed
into
the function, the name of the desired attribute, and a
return parameter that tells whether the attribute
is null. GetAttributeByName
returns a Datum
value that you can convert to the proper data type by using the
appropriate DatumGetXXX()
macro. Note that the return value is meaningless if the null flag is
set; always check the null flag before trying to do anything with the
result.
There is also GetAttributeByNum
, which selects
the target attribute by column number instead of name.
The following command declares the function
c_overpaid
in SQL:
CREATE FUNCTION c_overpaid(emp, integer) RETURNS boolean AS 'DIRECTORY/funcs', 'c_overpaid' LANGUAGE C STRICT;
Notice we have used STRICT so that we did not have to check whether the input arguments were NULL.
To return a row or composite-type value from a C-language function, you can use a special API that provides macros and functions to hide most of the complexity of building composite data types. To use this API, the source file must include:
#include "funcapi.h"
There are two ways you can build a composite data value (henceforth
a "tuple"): you can build it from an array of Datum values,
or from an array of C strings that can be passed to the input
conversion functions of the tuple's column data types. In either
case, you first need to obtain or construct a TupleDesc
descriptor for the tuple structure. When working with Datums, you
pass the TupleDesc to BlessTupleDesc
,
and then call heap_form_tuple
for each row. When working
with C strings, you pass the TupleDesc to
TupleDescGetAttInMetadata
, and then call
BuildTupleFromCStrings
for each row. In the case of a
function returning a set of tuples, the setup steps can all be done
once during the first call of the function.
Several helper functions are available for setting up the needed TupleDesc. The recommended way to do this in most functions returning composite values is to call:
TypeFuncClass get_call_result_type(FunctionCallInfo fcinfo, Oid *resultTypeId, TupleDesc *resultTupleDesc)
passing the same fcinfo struct passed to the calling function itself. (This of course requires that you use the version-1 calling conventions.) resultTypeId can be specified as NULL or as the address of a local variable to receive the function's result type OID. resultTupleDesc should be the address of a local TupleDesc variable. Check that the result is TYPEFUNC_COMPOSITE; if so, resultTupleDesc has been filled with the needed TupleDesc. (If it is not, you can report an error along the lines of "function returning record called in context that cannot accept type record".)
Tip:
get_call_result_type
can resolve the actual type of a polymorphic function result; so it is useful in functions that return scalar polymorphic results, not only functions that return composites. The resultTypeId output is primarily useful for functions returning polymorphic scalars.
Note:
get_call_result_type
has a siblingget_expr_result_type
, which can be used to resolve the expected output type for a function call represented by an expression tree. This can be used when trying to determine the result type from outside the function itself. There is alsoget_func_result_type
, which can be used when only the function's OID is available. However these functions are not able to deal with functions declared to return record, andget_func_result_type
cannot resolve polymorphic types, so you should preferentially useget_call_result_type
.
Older, now-deprecated functions for obtaining TupleDescs are:
TupleDesc RelationNameGetTupleDesc(const char *relname)
to get a TupleDesc for the row type of a named relation, and:
TupleDesc TypeGetTupleDesc(Oid typeoid, List *colaliases)
to get a TupleDesc based on a type OID. This can be used to get a TupleDesc for a base or composite type. It will not work for a function that returns record, however, and it cannot resolve polymorphic types.
Once you have a TupleDesc, call:
TupleDesc BlessTupleDesc(TupleDesc tupdesc)
if you plan to work with Datums, or:
AttInMetadata *TupleDescGetAttInMetadata(TupleDesc tupdesc)
if you plan to work with C strings. If you are writing a function returning set, you can save the results of these functions in the FuncCallContext structure — use the tuple_desc or attinmeta field respectively.
When working with Datums, use:
HeapTuple heap_form_tuple(TupleDesc tupdesc, Datum *values, bool *isnull)
to build a HeapTuple given user data in Datum form.
When working with C strings, use:
HeapTuple BuildTupleFromCStrings(AttInMetadata *attinmeta, char **values)
to build a HeapTuple given user data in C string form. values is an array of C strings, one for each attribute of the return row. Each C string should be in the form expected by the input function of the attribute data type. In order to return a null value for one of the attributes, the corresponding pointer in the values array should be set to NULL. This function will need to be called again for each row you return.
Once you have built a tuple to return from your function, it must be converted into a Datum. Use:
HeapTupleGetDatum(HeapTuple tuple)
to convert a HeapTuple into a valid Datum. This Datum can be returned directly if you intend to return just a single row, or it can be used as the current return value in a set-returning function.
An example appears in the next section.
There is also a special API that provides support for returning sets (multiple rows) from a C-language function. A set-returning function must follow the version-1 calling conventions. Also, source files must include funcapi.h, as above.
A set-returning function (SRF) is called once for each item it returns. The SRF must therefore save enough state to remember what it was doing and return the next item on each call. The structure FuncCallContext is provided to help control this process. Within a function, fcinfo->flinfo->fn_extra is used to hold a pointer to FuncCallContext across calls.
typedef struct { /* * Number of times we've been called before * * call_cntr is initialized to 0 for you by SRF_FIRSTCALL_INIT(), and * incremented for you every time SRF_RETURN_NEXT() is called. */ uint32 call_cntr; /* * OPTIONAL maximum number of calls * * max_calls is here for convenience only and setting it is optional. * If not set, you must provide alternative means to know when the * function is done. */ uint32 max_calls; /* * OPTIONAL pointer to result slot * * This is obsolete and only present for backward compatibility, viz, * user-defined SRFs that use the deprecated TupleDescGetSlot(). */ TupleTableSlot *slot; /* * OPTIONAL pointer to miscellaneous user-provided context information * * user_fctx is for use as a pointer to your own data to retain * arbitrary context information between calls of your function. */ void *user_fctx; /* * OPTIONAL pointer to struct containing attribute type input metadata * * attinmeta is for use when returning tuples (i.e., composite data types) * and is not used when returning base data types. It is only needed * if you intend to use BuildTupleFromCStrings() to create the return * tuple. */ AttInMetadata *attinmeta; /* * memory context used for structures that must live for multiple calls * * multi_call_memory_ctx is set by SRF_FIRSTCALL_INIT() for you, and used * by SRF_RETURN_DONE() for cleanup. It is the most appropriate memory * context for any memory that is to be reused across multiple calls * of the SRF. */ MemoryContext multi_call_memory_ctx; /* * OPTIONAL pointer to struct containing tuple description * * tuple_desc is for use when returning tuples (i.e., composite data types) * and is only needed if you are going to build the tuples with * heap_form_tuple() rather than with BuildTupleFromCStrings(). Note that * the TupleDesc pointer stored here should usually have been run through * BlessTupleDesc() first. */ TupleDesc tuple_desc; } FuncCallContext;
An SRF uses several functions and macros that automatically manipulate the FuncCallContext structure (and expect to find it via fn_extra). Use:
SRF_IS_FIRSTCALL()
to determine if your function is being called for the first or a subsequent time. On the first call (only) use:
SRF_FIRSTCALL_INIT()
to initialize the FuncCallContext. On every function call, including the first, use:
SRF_PERCALL_SETUP()
to properly set up for using the FuncCallContext and clearing any previously returned data left over from the previous pass.
If your function has data to return, use:
SRF_RETURN_NEXT(funcctx, result)
to return it to the caller. (result must be of type Datum, either a single value or a tuple prepared as described above.) Finally, when your function is finished returning data, use:
SRF_RETURN_DONE(funcctx)
to clean up and end the SRF.
The memory context that is current when the SRF is called is
a transient context that will be cleared between calls. This means
that you do not need to call pfree
on everything
you allocated using palloc
; it will go away anyway. However, if you want to allocate
any data structures to live across calls, you need to put them somewhere
else. The memory context referenced by
multi_call_memory_ctx is a suitable location for any
data that needs to survive until the SRF is finished running. In most
cases, this means that you should switch into
multi_call_memory_ctx while doing the first-call setup.
A complete pseudo-code example looks like the following:
Datum my_set_returning_function(PG_FUNCTION_ARGS) { FuncCallContext *funcctx; Datum result; further declarations as needed if (SRF_IS_FIRSTCALL()) { MemoryContext oldcontext; funcctx = SRF_FIRSTCALL_INIT(); oldcontext = MemoryContextSwitchTo(funcctx->multi_call_memory_ctx); /* One-time setup code appears here: */ user code if returning composite build TupleDesc, and perhaps AttInMetadata endif returning composite user code MemoryContextSwitchTo(oldcontext); } /* Each-time setup code appears here: */ user code funcctx = SRF_PERCALL_SETUP(); user code /* this is just one way we might test whether we are done: */ if (funcctx->call_cntr < funcctx->max_calls) { /* Here we want to return another item: */ user code obtain result Datum SRF_RETURN_NEXT(funcctx, result); } else { /* Here we are done returning items and just need to clean up: */ user code SRF_RETURN_DONE(funcctx); } }
A complete example of a simple SRF returning a composite type looks like:
PG_FUNCTION_INFO_V1(retcomposite); Datum retcomposite(PG_FUNCTION_ARGS) { FuncCallContext *funcctx; int call_cntr; int max_calls; TupleDesc tupdesc; AttInMetadata *attinmeta; /* stuff done only on the first call of the function */ if (SRF_IS_FIRSTCALL()) { MemoryContext oldcontext; /* create a function context for cross-call persistence */ funcctx = SRF_FIRSTCALL_INIT(); /* switch to memory context appropriate for multiple function calls */ oldcontext = MemoryContextSwitchTo(funcctx->multi_call_memory_ctx); /* total number of tuples to be returned */ funcctx->max_calls = PG_GETARG_UINT32(0); /* Build a tuple descriptor for our result type */ if (get_call_result_type(fcinfo, NULL, &tupdesc) != TYPEFUNC_COMPOSITE) ereport(ERROR, (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), errmsg("function returning record called in context " "that cannot accept type record"))); /* * generate attribute metadata needed later to produce tuples from raw * C strings */ attinmeta = TupleDescGetAttInMetadata(tupdesc); funcctx->attinmeta = attinmeta; MemoryContextSwitchTo(oldcontext); } /* stuff done on every call of the function */ funcctx = SRF_PERCALL_SETUP(); call_cntr = funcctx->call_cntr; max_calls = funcctx->max_calls; attinmeta = funcctx->attinmeta; if (call_cntr < max_calls) /* do when there is more left to send */ { char **values; HeapTuple tuple; Datum result; /* * Prepare a values array for building the returned tuple. * This should be an array of C strings which will * be processed later by the type input functions. */ values = (char **) palloc(3 * sizeof(char *)); values[0] = (char *) palloc(16 * sizeof(char)); values[1] = (char *) palloc(16 * sizeof(char)); values[2] = (char *) palloc(16 * sizeof(char)); snprintf(values[0], 16, "%d", 1 * PG_GETARG_INT32(1)); snprintf(values[1], 16, "%d", 2 * PG_GETARG_INT32(1)); snprintf(values[2], 16, "%d", 3 * PG_GETARG_INT32(1)); /* build a tuple */ tuple = BuildTupleFromCStrings(attinmeta, values); /* make the tuple into a datum */ result = HeapTupleGetDatum(tuple); /* clean up (this is not really necessary) */ pfree(values[0]); pfree(values[1]); pfree(values[2]); pfree(values); SRF_RETURN_NEXT(funcctx, result); } else /* do when there is no more left */ { SRF_RETURN_DONE(funcctx); } }
One way to declare this function in SQL is:
CREATE TYPE __retcomposite AS (f1 integer, f2 integer, f3 integer); CREATE OR REPLACE FUNCTION retcomposite(integer, integer) RETURNS SETOF __retcomposite AS 'filename', 'retcomposite' LANGUAGE C IMMUTABLE STRICT;
A different way is to use OUT parameters:
CREATE OR REPLACE FUNCTION retcomposite(IN integer, IN integer, OUT f1 integer, OUT f2 integer, OUT f3 integer) RETURNS SETOF record AS 'filename', 'retcomposite' LANGUAGE C IMMUTABLE STRICT;
Notice that in this method the output type of the function is formally an anonymous record type.
The directory contrib/tablefunc module in the source distribution contains more examples of set-returning functions.
C-language functions can be declared to accept and
return the polymorphic types
anyelement, anyarray, anynonarray,
anyenum, and anyrange.
See Section 35.2.5 for a more detailed explanation
of polymorphic functions. When function arguments or return types
are defined as polymorphic types, the function author cannot know
in advance what data type it will be called with, or
need to return. There are two routines provided in fmgr.h
to allow a version-1 C function to discover the actual data types
of its arguments and the type it is expected to return. The routines are
called get_fn_expr_rettype(FmgrInfo *flinfo) and
get_fn_expr_argtype(FmgrInfo *flinfo, int argnum).
They return the result or argument type OID, or InvalidOid if the
information is not available.
The structure flinfo is normally accessed as
fcinfo->flinfo. The parameter argnum
is zero based. get_call_result_type
can also be used
as an alternative to get_fn_expr_rettype
.
There is also get_fn_expr_variadic
, which can be used to
find out whether variadic arguments have been merged into an array.
This is primarily useful for VARIADIC "any" functions,
since such merging will always have occurred for variadic functions
taking ordinary array types.
For example, suppose we want to write a function to accept a single element of any type, and return a one-dimensional array of that type:
PG_FUNCTION_INFO_V1(make_array); Datum make_array(PG_FUNCTION_ARGS) { ArrayType *result; Oid element_type = get_fn_expr_argtype(fcinfo->flinfo, 0); Datum element; bool isnull; int16 typlen; bool typbyval; char typalign; int ndims; int dims[MAXDIM]; int lbs[MAXDIM]; if (!OidIsValid(element_type)) elog(ERROR, "could not determine data type of input"); /* get the provided element, being careful in case it's NULL */ isnull = PG_ARGISNULL(0); if (isnull) element = (Datum) 0; else element = PG_GETARG_DATUM(0); /* we have one dimension */ ndims = 1; /* and one element */ dims[0] = 1; /* and lower bound is 1 */ lbs[0] = 1; /* get required info about the element type */ get_typlenbyvalalign(element_type, &typlen, &typbyval, &typalign); /* now build the array */ result = construct_md_array(&element, &isnull, ndims, dims, lbs, element_type, typlen, typbyval, typalign); PG_RETURN_ARRAYTYPE_P(result); }
The following command declares the function
make_array
in SQL:
CREATE FUNCTION make_array(anyelement) RETURNS anyarray AS 'DIRECTORY/funcs', 'make_array' LANGUAGE C IMMUTABLE;
There is a variant of polymorphism that is only available to C-language
functions: they can be declared to take parameters of type
"any". (Note that this type name must be double-quoted,
since it's also a SQL reserved word.) This works like
anyelement except that it does not constrain different
"any" arguments to be the same type, nor do they help
determine the function's result type. A C-language function can also
declare its final parameter to be VARIADIC "any". This will
match one or more actual arguments of any type (not necessarily the same
type). These arguments will not be gathered into an array
as happens with normal variadic functions; they will just be passed to
the function separately. The PG_NARGS()
macro and the
methods described above must be used to determine the number of actual
arguments and their types when using this feature. Also, users of such
a function might wish to use the VARIADIC keyword in their
function call, with the expectation that the function would treat the
array elements as separate arguments. The function itself must implement
that behavior if wanted, after using get_fn_expr_variadic
to
detect that the actual argument was marked with VARIADIC.
Some function calls can be simplified during planning based on properties specific to the function. For example, int4mul(n, 1) could be simplified to just n. To define such function-specific optimizations, write a transform function and place its OID in the protransform field of the primary function's pg_proc entry. The transform function must have the SQL signature protransform(internal) RETURNS internal. The argument, actually FuncExpr *, is a dummy node representing a call to the primary function. If the transform function's study of the expression tree proves that a simplified expression tree can substitute for all possible concrete calls represented thereby, build and return that simplified expression. Otherwise, return a NULL pointer (not a SQL null).
We make no guarantee that PostgreSQL will never call the primary function in cases that the transform function could simplify. Ensure rigorous equivalence between the simplified expression and an actual call to the primary function.
Currently, this facility is not exposed to users at the SQL level because of security concerns, so it is only practical to use for optimizing built-in functions.
Add-ins can reserve LWLocks and an allocation of shared memory on server startup. The add-in's shared library must be preloaded by specifying it in shared_preload_libraries. Shared memory is reserved by calling:
void RequestAddinShmemSpace(int size)
from your _PG_init
function.
LWLocks are reserved by calling:
void RequestAddinLWLocks(int n)
from _PG_init
.
To avoid possible race-conditions, each backend should use the LWLock
AddinShmemInitLock
when connecting to and initializing
its allocation of shared memory, as shown here:
static mystruct *ptr = NULL; if (!ptr) { bool found; LWLockAcquire(AddinShmemInitLock, LW_EXCLUSIVE); ptr = ShmemInitStruct("my struct name", size, &found); if (!found) { initialize contents of shmem area; acquire any requested LWLocks using: ptr->mylockid = LWLockAssign(); } LWLockRelease(AddinShmemInitLock); }
Although the PostgreSQL backend is written in C, it is possible to write extensions in C++ if these guidelines are followed:
All functions accessed by the backend must present a C interface to the backend; these C functions can then call C++ functions. For example, extern C linkage is required for backend-accessed functions. This is also necessary for any functions that are passed as pointers between the backend and C++ code.
Free memory using the appropriate deallocation method. For example,
most backend memory is allocated using palloc()
, so use
pfree()
to free it. Using C++
delete
in such cases will fail.
Prevent exceptions from propagating into the C code (use a catch-all
block at the top level of all extern C functions). This
is necessary even if the C++ code does not explicitly throw any
exceptions, because events like out-of-memory can still throw
exceptions. Any exceptions must be caught and appropriate errors
passed back to the C interface. If possible, compile C++ with
-fno-exceptions to eliminate exceptions entirely; in such
cases, you must check for failures in your C++ code, e.g. check for
NULL returned by new()
.
If calling backend functions from C++ code, be sure that the
C++ call stack contains only plain old data structures
(POD). This is necessary because backend errors
generate a distant longjmp()
that does not properly
unroll a C++ call stack with non-POD objects.
In summary, it is best to place C++ code behind a wall of extern C functions that interface to the backend, and avoid exception, memory, and call stack leakage.